Name

www.PapaCambridge.com

## CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

## PHYSICAL SCIENCE

0652/02

Paper 2

October/November 2003

1 hour

Candidates answer on the Question Paper. No Additional Materials are required.

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

## Answer all questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question. A copy of the Periodic Table is printed on page 12.

| For Examiner's Use |  |  |  |  |  |
|--------------------|--|--|--|--|--|
| 1                  |  |  |  |  |  |
| 2                  |  |  |  |  |  |
| 3                  |  |  |  |  |  |
| 4                  |  |  |  |  |  |
| 5                  |  |  |  |  |  |
| 6                  |  |  |  |  |  |
| 7                  |  |  |  |  |  |
| 8                  |  |  |  |  |  |
| 9                  |  |  |  |  |  |
| 10                 |  |  |  |  |  |
| 11                 |  |  |  |  |  |
| 12                 |  |  |  |  |  |
| Total              |  |  |  |  |  |

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

|     |       | 2                                                                                                     | E   |
|-----|-------|-------------------------------------------------------------------------------------------------------|-----|
| (a) | (i)   | Describe how a sodium atom, Na, forms a sodium ion, Na <sup>+</sup> .                                 | and |
|     |       | [                                                                                                     | 1]  |
|     | (ii)  | Describe how a chlorine atom, Cl, forms a chloride ion, Cl <sup>-</sup> .                             |     |
|     |       | [                                                                                                     | 1]  |
|     | (iii) | Hence describe how sodium chloride is formed from sodium and chlorine.                                |     |
|     |       |                                                                                                       |     |
| (b) | ) In  | terms of covalent bonding, explain how chlorine forms diatomic molecules, $\operatorname{C}\!{l}_2$ . |     |
|     |       |                                                                                                       |     |
|     |       | [                                                                                                     | 2]  |

A scientist is studying the electromagnetic radiation received from a star. The graph 2 2.1 shows the intensity of the radiation of different wavelengths.

intensity of radiation



Fig. 2.1

The wavelength of visible light ranges from 0.45 to 0.75 micrometres, the shaded region on the graph.

| (a) | In what regions of the electromagnetic spectrum are the points <b>H</b> and <b>S</b> ? |      |
|-----|----------------------------------------------------------------------------------------|------|
|     | R                                                                                      |      |
|     | S                                                                                      | .[2] |
| (b) | How does the speed in a vacuum of the radiation at <b>R</b> and at <b>S</b> compare?   |      |
|     |                                                                                        | .[1] |
| (c) | At what wavelength is the intensity of the radiation greatest?                         |      |
|     | micrometres                                                                            | [1]  |

For Examiner's Use

|   | A small child has mixed together the salt and the pepper in the kitchen.                                                                                                                                  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 4                                                                                                                                                                                                         |
| 3 | A small child has mixed together the salt and the pepper in the kitchen.  Salt is soluble in water. Pepper is not soluble in water.  Describe how to obtain salt and pepper separately from this mixture. |
|   |                                                                                                                                                                                                           |
|   |                                                                                                                                                                                                           |
|   |                                                                                                                                                                                                           |
|   |                                                                                                                                                                                                           |
|   |                                                                                                                                                                                                           |
|   | [4]                                                                                                                                                                                                       |

Complete the table in Fig. 4.1 for the relative charge and approximate relative mass of a proton, a neutron and an electron.

| particle | relative charge | approximate relative mass |
|----------|-----------------|---------------------------|
| proton   | +1              |                           |
| neutron  |                 | 1                         |
| electron |                 | <u>1</u><br>2000          |

Fig. 4.1

[3]

[2]

(a) An athlete wins a trophy for completing a 200 m race in a time of 25 s. Calculate 5 average speed of the athlete. Show your working and state the unit.

| in a time of 25 s. Calculate the unit. | For<br>Examiner's<br>Use |
|----------------------------------------|--------------------------|
| speed =                                | [3]                      |

(b) Fig. 5.1 shows four designs for the trophy, P, Q, R and S. The position of the centre of mass of each trophy is marked with an X.



Fig. 5.1

| Stat | •                                   | trophy would be the most stable.                          |            |
|------|-------------------------------------|-----------------------------------------------------------|------------|
|      |                                     |                                                           |            |
|      |                                     |                                                           | [3]        |
| (a)  | State <b>two</b> propertie element. | es of iron which explain why this metal is described as a | transition |
|      | property 1                          |                                                           |            |
|      | property 2                          |                                                           | [2]        |
| (b)  | State <b>two</b> methods            | used to prevent iron rusting.                             |            |
|      | method 1                            |                                                           |            |
|      | method 2                            |                                                           |            |

6

www.PapaCambridge.com Fig. 7.1 shows an experiment to measure the half-life of an isotope of protactinium 7 decays by emission of beta-particles.



Fig. 7.1

| (a) | (i)   | Explain what is meant by the term isotope.                                                                                                           |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |       |                                                                                                                                                      |
|     |       | [2]                                                                                                                                                  |
|     | (ii)  | Name a suitable detector.                                                                                                                            |
|     |       | [1]                                                                                                                                                  |
|     | (iii) | Explain why this method could not be used for a liquid that emits alpha-particles.                                                                   |
|     |       |                                                                                                                                                      |
|     |       |                                                                                                                                                      |
|     |       | [2]                                                                                                                                                  |
| (b) | In t  | stactinium has a half-life of 1 minute.  he experiment the initial count rate was 480 Bq.  culate the count rate after 3 minutes. Show your working. |
|     |       | count rate = Bq. [3]                                                                                                                                 |
| (c) | In a  | a further experiment the background count rate was considered.                                                                                       |
|     | Exp   | plain what is meant by the term background count rate.                                                                                               |
|     |       |                                                                                                                                                      |
|     |       |                                                                                                                                                      |
|     |       | [2]                                                                                                                                                  |

- Two students investigate the speed of reaction of zinc with dilute hydrochloric acid. 8
  - (a) One student finds that adding water to dilute the acid makes the reaction slower.

|     | The state of the s |                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|     | 7 Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | For<br>:aminer's |
| Two | students investigate the speed of reaction of zinc with dilute hydrochloric acid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Use              |
| (a) | One student finds that adding water to dilute the acid makes the reaction slower.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
|     | students investigate the speed of reaction of zinc with dilute hydrochloric acid.  One student finds that adding water to dilute the acid makes the reaction slower.  Use the kinetic particle theory of matter to explain why the reaction is slower when the acid is more dilute.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Se.co.           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|     | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| (b) | The other student finds that warming the acid makes the reaction faster.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|     | Use the kinetic particle theory of matter to explain why the reaction is faster when the acid is warmer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|     | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |

|     |      | the state of the s |      |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     |      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| (a) |      | erms of molecular structure, explain why butane is described as a sarocarbon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Camb |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| /b\ |      | main use of butons is a fuel in the form of liquotical natroleum and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [1]  |
| (b) |      | main use of butane is a fuel in the form of liquefied petroleum gas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|     | (i)  | When butane is burnt completely in excess air, only two substances are formed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d.   |
|     |      | Name these two substances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|     |      | substance 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|     |      | substance 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [2]  |
|     | (ii) | Explain why butane can be described as a <i>clean</i> fuel when burnt completely.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [2]  |

10 Fig 10.1 shows a bimetal strip before and after being heated.

Suggest a use for such a circuit.

(ii)



|     |         |           |           | 11011       |              |            |                 |           |                                         |     |
|-----|---------|-----------|-----------|-------------|--------------|------------|-----------------|-----------|-----------------------------------------|-----|
|     |         |           |           |             | Fig. 10.     | 1          |                 |           |                                         |     |
| (a) | Explair | n why the | strip be  | nds whe     | n it is heat | ed.        |                 |           |                                         |     |
|     |         | •••••     |           |             |              |            |                 |           |                                         |     |
|     |         |           |           |             |              |            |                 |           |                                         |     |
|     |         |           |           |             |              |            |                 |           |                                         | [2] |
| (b) | Fig. 10 | ).2 shows | a simila  | ır strip in | a circuit.   |            |                 |           |                                         |     |
|     |         |           |           | ļ           |              |            |                 | S         |                                         |     |
|     |         |           |           |             | Fig. 10.     | 2          |                 |           |                                         |     |
|     | (i) E   | xplain wh | y the lan | np flashe   | s on and     | off when s | switch <b>S</b> | is closed | l.                                      |     |
|     |         | •••••     |           |             |              |            |                 |           | • • • • • • • • • • • • • • • • • • • • |     |
|     |         |           |           |             |              |            |                 |           |                                         |     |
|     |         |           |           |             |              |            |                 |           |                                         | [3] |

11 (a) Use the following words to complete the table in Fig. 11.1.

Each word may be used once, more than once or not at all.

| C | onductor   | high                        | insulato |                       | low |  |
|---|------------|-----------------------------|----------|-----------------------|-----|--|
|   |            | density at room temperature |          | conduct<br>of electri | -   |  |
|   | metals     |                             |          |                       |     |  |
|   | non-metals | n-metals                    |          |                       |     |  |

Fig. 11.1

[2]

(b) Gold occurs naturally as an element.

Iron is obtained from its ore by heating with carbon.

Aluminium must be obtained from its ore by electrolysis which requires considerable energy.

| In terms of the reactivity of these metals, explain these facts. |
|------------------------------------------------------------------|
|                                                                  |
|                                                                  |
| [2]                                                              |

**12** Fig. 12.1 shows a circuit designed to determine the resistance of a wire. However, the voltmeter has been omitted.



Fig. 12.1

| (a) | (i)<br>(ii) | Complete the diagram to show how the voltmeter should be connected.  Explain why the variable resistor is included in the circuit. |      |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------|------|
| (b) |             | wire is replaced by a wire made from the same material and of the same length, wice the diameter.                                  |      |
|     | Sta         | te how the resistance of the wires would compare.                                                                                  |      |
|     |             |                                                                                                                                    | 64.1 |

|            | <b>Elements</b>           |
|------------|---------------------------|
| DATA SHEET | The Periodic Table of the |

|                              |                                                                 |                                                          |                              |                                                                                        |                                   |                                   | Group                           | dn                                     |                                                 |                             |                                                    |                                             |                                       |                                                |                                               |                                |               |
|------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------|----------------------------------------|-------------------------------------------------|-----------------------------|----------------------------------------------------|---------------------------------------------|---------------------------------------|------------------------------------------------|-----------------------------------------------|--------------------------------|---------------|
| _                            | =                                                               |                                                          |                              |                                                                                        |                                   |                                   |                                 |                                        |                                                 |                             | =                                                  | 2                                           | >                                     | >                                              | =>                                            | 0                              |               |
|                              |                                                                 |                                                          |                              |                                                                                        |                                   | 1 <b>T</b> Hydrogen               |                                 |                                        |                                                 |                             |                                                    |                                             |                                       |                                                |                                               | 4 <b>He</b> Helium             |               |
| Lithium Lithium 23 Na Sodium | Beryllium 4 24 Mg Magnesium 12                                  |                                                          |                              |                                                                                        |                                   |                                   |                                 |                                        |                                                 |                             | 11 B Boron 5 27 A1 Auminium 13                     | Carbon 6 Carbon 8 Silicon 14                | Nitrogen 7 311 <b>P</b> Phosphorus 15 | 16<br>Oxygen<br>8<br>32<br><b>S</b><br>Sulphur | 19 Fluorine 9 35.5 <b>C1</b> Chlorine         | 20 Ne Neon 10 Ar Argon 18      |               |
| Potassium 85 Rb Rubidium 7   | Ca Calcium 20 88 88 Strontium 38                                | Scandium Titanium 21 89 91 <b>Xr</b> Yrtrium 21 21 39 40 | Vanadium 23 93 Nb Niobium 41 | 52<br>Cr<br>Chromium<br>24<br>Moybdenum<br>42                                          | Manganese 25 TC Technetium 43     | 56 Fe Iron 26 101 Ru Ruthenium 44 | Cobalt Cobalt 27 103 Rhodium 45 | Nickel 28 Nickel 28 Pd Pd Palladium 46 | Cu<br>Copper<br>29<br>108<br>Ag<br>Silver<br>47 | 2 Zinc 30 112 Cd Cadmium 48 | 70<br><b>Ga</b> Gallium 31 115 <b>In</b> Indium 49 | 73 <b>Ge</b> Germanium 32 119 <b>Sn</b> Tin | 75                                    | Selenium 34 128 Te Tellurium 52                | 80 Bromine 35 127 I I I I I I I I I I I I I I | Krypton 36 Krypton 36 Xenon 54 | 12            |
| Caesium                      | 137<br><b>Ba</b><br>Barium<br>56                                | La Hafrium 57 * 72                                       | Ta<br>Ta<br>Tantalum<br>73   | 184 <b>W</b> Tungsten 74                                                               | 186<br><b>Re</b><br>Rhenium<br>75 | 190<br><b>Os</b><br>Osmium<br>76  | 192 <b>Ir</b>                   | 195 <b>Pt</b> Platinum 78              | 197 <b>Au</b> Gold 79                           | Hg<br>Mercury               | 204 <b>T 1</b> Thallium 81                         | 207 <b>Pb</b> Lead 82                       | 209<br>Bismuth<br>83                  | Po<br>Polonium<br>84                           | At<br>Astatine<br>85                          | Radon 86                       |               |
| <b>Fr</b> Francium           | Francium Radium Actinium 88 Actinium 88 89-71 Lanthanoid series | Actinium + 1 series                                      | 140                          | 141                                                                                    | 44 Z                              | <u> </u>                          | 150                             | 152                                    | 157                                             | 159                         | 162                                                | 165                                         | 167<br>7                              | 169                                            | 173                                           | 175                            |               |
| )0-103<br> -                 | 0.103 Actinoid series                                           | 3 series<br>9 - relative atomic mass                     | Cerium<br>58                 | Praseodymium 59                                                                        | ž 09                              | Ε                                 | Samarium<br>62                  | Europium<br>63                         | Gadolinium<br>64                                | Terbium<br>65               | Dysprosium 66                                      | Holmium<br>67                               | Erbium<br>68                          | Thulium<br>69                                  | Ytterbium 70                                  | Lutetium<br>71                 | My.           |
| ∑é                           | × ×                                                             | X = atomic symbol b = proton (atomic) number             | <b>Th</b> Thorium            | Pa<br>Protactinium<br>91                                                               | 238<br><b>U</b><br>Uranium<br>92  | Np<br>Neptunium<br>93             | <b>Pu</b> Plutonium 94          | Am<br>Americium<br>95                  | Curium<br>96                                    | <b>BK</b> Berkelium 97      | Californium 98                                     | ES<br>Einsteinium<br>99                     | Fm<br>Fermium<br>100                  | Md<br>Mendelevium<br>101                       | Nobelium<br>102                               | Lay L                          | W. Pa         |
|                              |                                                                 |                                                          | The v                        | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). | one mole                          | of any ga:                        | s is 24 dn                      | ז at room                              | ı tempera                                       | ture and                    | pressure                                           | (r.t.p.).                                   |                                       |                                                | Tide co                                       | Camb                           | Cambridge.co. |
|                              |                                                                 |                                                          |                              |                                                                                        |                                   |                                   |                                 |                                        |                                                 |                             |                                                    |                                             |                                       | 2                                              |                                               |                                |               |

The volume of one mole of any gas is  $24\,\mathrm{dm^3}$  at room temperature and pressure (r.t.p.).